Với \(\forall x\) ta có :
+) \(\left|x+\dfrac{1}{2}\right|\ge0\)
+) \(\left|x+\dfrac{1}{6}\right|\ge0\)
..........................
+) \(\left|x+\dfrac{1}{110}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+.........+\left|x+\dfrac{1}{110}\right|\ge0\)
Mà \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+........+\left|x+\dfrac{1}{110}\right|=11x\)
\(\Leftrightarrow11x\ge0\)
\(\Leftrightarrow x\ge0\)
Với \(x\ge0\) thì :
+) \(\left|x+\dfrac{1}{2}\right|=x+\dfrac{1}{2}\)
+) \(\left|x+\dfrac{1}{6}\right|=x+\dfrac{1}{6}\)
.....................................
+) \(\left|x+\dfrac{1}{110}\right|=x+\dfrac{1}{110}\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+......+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow11x+\left(\dfrac{1}{2}+\dfrac{1}{6}+........+\dfrac{1}{110}\right)=11x\)
\(\Leftrightarrow0x=\dfrac{1}{2}+\dfrac{1}{6}+....+\dfrac{1}{110}\) (vô lí)
\(\Leftrightarrow x\in\varnothing\)