|x + 2| + |x - 5| = 7
x + 2 + x - 5 = 7
x + (2 + 5 ) = 7
x + 7 = 7
x = 7 - 7
x = 0
|x + 2| + |x - 5| = 7
x + 2 + x - 5 = 7
x + (2 + 5 ) = 7
x + 7 = 7
x = 7 - 7
x = 0
a) Tìm tập hợp các số nguyên x, biết rằng\(4\dfrac{5}{9}:2\dfrac{5}{18}-7< x< \left(3\dfrac{1}{5}:3,2+4,5.1\dfrac{31}{45}\right):\left(-21\dfrac{1}{2}\right)\)
b) tìm x, biết \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+....+\left|x+\dfrac{1}{110}\right|-11x\)
c)Tính gt biểu thức \(C=2x^3-5y^3+2015\) tại x,y thỏa mãn \(\left|x-1\right|+\left(y+2\right)^{20}=0\)
tìm x biết :
\(\left|x-1\right|+2.\left|x-2\right|+3.\left|x-3\right|+4.\left|x-4\right|+5.\left|x-5\right|+20x=0\)
Tìm x biết :
\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)
Tìm x, y biết :
\(\left(x+y-2\right)^2+7=\dfrac{14}{\left|y-1\right|+\left|y-3\right|}\)
Tìm \(x,\) biết:
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x+9\right|=5\)
c) \( \left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
tìm x biết
a, \(3\left(x-2\right)-4\left(2x+1\right)-5\left(2x+3\right)=50\)
b, \(\left(x-7\right)^5-\left(x-7\right)^3=0\)
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)voi x∈{-2;-5;-10;-17}
Tìm x biết :
a) \(\dfrac{1}{4}x-1+\dfrac{1}{3}\left(\dfrac{5}{2}x-7\right)-\left(\dfrac{5}{8}x-2\right)=\dfrac{7}{2}\)
b) \(\left|2-\dfrac{3}{2}x\right|-4=x+2\)
c) \(-3\left(\dfrac{2}{5}x-\dfrac{1}{5}\right)-x\left(x-\dfrac{1}{2}\right)=\dfrac{1}{6}-x^2\)
Tìm x biết :
\(\left|x-3\right|-2\left|5-2x\right|=11\)
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)