Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jimin

tìm x biết:

a, 4x\(^2\)-25-(2x-5)(2x+7)=0

b, 2x\(^3\)+3x\(^2\)+2x+3=0

c, x\(^3\) +27+(x+3)(x-9)=0

d, x\(^2\)(x+7)-4(x+7)=0

Trần Minh Hoàng
22 tháng 8 2018 lúc 10:18

a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x\right)^2-5^2-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(-2\right).\left(2x-5\right)=0\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

Dũng Nguyễn
22 tháng 8 2018 lúc 10:25

a,\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(4x^2-25\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(2x-5\right)^2-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(2x-5-2x-7\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(-12\right)=0\)

\(\Rightarrow2x-5=0\)

\(\Rightarrow2x=5\)

\(\Rightarrow x=\dfrac{5}{2}\)

\(b,2x^3+3x^2+2x+3=0\)

\(\Rightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)

\(\Rightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Rightarrow\left(2x+3\right)\left(x^2+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-3\\x^2=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)

\(c,x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x+3\right)^3+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2+9+x-9\right)=0\)

\(\Rightarrow\left(x+3\right).x^3=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)

\(d,x^2\left(x+7\right)-4\left(x+7\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=4\\x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)


Các câu hỏi tương tự
Dung pham tuan dung
Xem chi tiết
Quỳnh Phương
Xem chi tiết
Trường Beenlee
Xem chi tiết
nguyễn thị thúy hà
Xem chi tiết
Bùi Lê Trâm Anh
Xem chi tiết
Nii-chan
Xem chi tiết
Thịnh Phan
Xem chi tiết
Nguyễn Bảo Nhi
Xem chi tiết
nguyễn vy
Xem chi tiết