a: \(\left|\dfrac{1}{2}x-3\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=\dfrac{1}{2}\\\dfrac{1}{2}x-3=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{7}{2}\\\dfrac{1}{2}x=\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
b: \(\left|3x+\dfrac{1}{5}\right|-\dfrac{1}{3}=\dfrac{2}{3}\)
\(\Leftrightarrow\left|3x+\dfrac{1}{5}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{1}{5}=1\\3x+\dfrac{1}{5}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{4}{5}\\3x=-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{15}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
d: \(\left|\dfrac{1}{2}x-3\right|< \dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-3>-\dfrac{1}{2}\\\dfrac{1}{2}x-3< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x>\dfrac{5}{2}\\\dfrac{1}{2}x< \dfrac{7}{2}\end{matrix}\right.\Leftrightarrow5< x< 7\)
e: \(\left|3x-\dfrac{4}{5}\right|>\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{4}{5}>\dfrac{1}{3}\\3x-\dfrac{4}{5}< -\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x>\dfrac{17}{15}\\3x< \dfrac{7}{15}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{17}{45}\\x< \dfrac{7}{45}\end{matrix}\right.\)