a)x3-3x2+3x-1=8
=>x3-3x2+3x-9=0
=>x3+3x-3x2-9=0
=>x(x2+3)-3(x2+3)=0
=>(x-3)(x2+3)=0
=>x-3=0 hoặc x2+3=0
Vì x2+3>0 với mọi x =>vô nghiệm
=>x=3
a) \(x^3-3x^2+3x-1=8\)
\(\Leftrightarrow\left(x-1\right)^3=8\)
\(\Leftrightarrow x-1=2\)
\(\Leftrightarrow x=3\)
b) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3=-12\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3=-12\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\frac{5}{12}\)
b) ( x - 2 )3 + 6( x + 1 )2 - x3 = -12
=>x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
=>-6x2+12x+4+6x2+12x+6=0
=>24x+10=0
=>-24x=-10
=>x=\(-\frac{5}{12}\)