Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kathy Nguyễn

Tìm x

1) \(4x^2+4x+6y+9y^2+2=0\)

2). \(25x^2+9y^2-10x+12y+5=0\)

3). \(9x^2+4y^2+12x-8y+17=0\)

Mysterious Person
7 tháng 8 2017 lúc 12:24

1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)

2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)

3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)

\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)

ta có : \(\left(3x+2\right)^2\ge0\forall x\)\(\left(2y-2\right)^2\ge0\forall y\)

\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)

\(\Rightarrow\) phương trình vô nghiệm


Các câu hỏi tương tự
Kathy Nguyễn
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Kathy Nguyễn
Xem chi tiết
cam linh
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
thanh
Xem chi tiết
Công Hoàng Văn
Xem chi tiết
Minh Anh Bùi
Xem chi tiết
Kudo Shinichi
Xem chi tiết