Để Q nguyên \(\Rightarrow\sqrt{n+2}\) nguyên
Đặt \(\sqrt{n+2}=a>1\Rightarrow n=a^2-2\)
\(\Rightarrow Q=a+\sqrt{a^2+a-2}\)
Để Q nguyên \(\Rightarrow a^2+a-2=k^2\Leftrightarrow4a^2+4a-8=4k^2\)\(\left(k\in N\right)\)
\(\Leftrightarrow\left(2a+1-2k\right)\left(2a+1+2k\right)=9\)
\(\Rightarrow\left\{{}\begin{matrix}2a+1+2k=9\\2a+1-2k=1\end{matrix}\right.\)
\(\Rightarrow2a+1=5\Rightarrow a=2\)
\(\Rightarrow\sqrt{n+2}=2\Rightarrow n=2\)