tìm tất cả các số nguyên dương n để n=d1^2+d2^2+d3^2+d4^2 trong đó d1,d2,d3,d4 là 4 ước nguyên dương nhỏ nhất của n và d1<d2<d3<d4
tìm tất cả các cặp số tự nhiên (a;b)sao cho a+1 chia hết cho b và b+1 chia hết cho a
Số tự nhiên a nhỏ nhất sao khi chia a cho 3/5 và khi chia a cho 1 3/7 ta đều được kết quá là số tự nhiên. Vậy số tự nhiên a là số mấy?
Tìm tất cả các số nguyên dương n sao cho n!+5 là lũy thừa bậc 3 của 1 số tự nhiên
Tìm tất cả các số nguyên tố p , q sao cho : p+q=(p-q)^3
Cho A và D là hai chữ số khác 0 và số có hai chữ số tạo bởi các chữ số này có các tính chất sau: 1. DA có thể phân tích thành tích của 2 và một số nguyên tố khác; 2. AD có thể phân tích thành tích của 2 và một số nguyên tố khác. Nếu A>D, hãy tìm số có hai chữ số AD.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 2: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
bài 3: Cho hai số tự nhiên a và b (với điều kiện a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài 4: Tìm n biết rằng n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài 5: Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Tìm tất cả các số tự nhiên n sao cho 2.3^n + 3 chia hết cho 11