Không tồn tại số $a$ thỏa mãn điều kiện đề bài vì với mọi \(a\in\mathbb{N}\Rightarrow 4a^2+8a+4>2\) và \(4a^2+8a+4\vdots 2\) nên \(4a^2+8a+4\) không thể là số nguyên tố.
Không tồn tại số $a$ thỏa mãn điều kiện đề bài vì với mọi \(a\in\mathbb{N}\Rightarrow 4a^2+8a+4>2\) và \(4a^2+8a+4\vdots 2\) nên \(4a^2+8a+4\) không thể là số nguyên tố.
Tìm các số tự nhiên a>1 để biểu thức \(M=a^4-5a^2-6a-5\) có giá trị là số nguyên tố
Ta có: \(a+1=a+1\)
\(4a^2+8a+5=4\left(a+1\right)^2+1\left(1\right)\)
\(6a^2+12a+7=6\left(a+1\right)^2+1\)
* Giả sử a=4 thì a+1;\(4a^2+8a+5;6a^2+12a+7\) là số nguyên tố
* Giả sử a#4 suy ra a+1#5 suy ra a+1 có dạng \(5k\pm1\) hoặc \(5k\pm3\)
-) a+1=5k+1 thế vào (1)\(\Rightarrow\) \(4\left(a+1\right)^2+1=4\left(5k+1\right)^2+1=100k^2+40k+5⋮5\)
Tương tự mấy TH kia cx v
Tìm tất cả các số tự nhiên n sao cho các đa giác đều n cạnh, n+1 cạnh, n+2 cạnh, n+3 cạnh đều có số đo mỗi góc là 1 số nguyên độ
1. Tìm để biểu thức sau là số nguyên tố : A = 3n3 – 5n2 + 3n – 5 .
2. a) Tìm n ∈ N để giá trị của biểu thức A = n3 + 2n2 – 3 là :
1 ) số nguyên tố ; 2) Bằng 2013
b) Tìm n ∈ N để giá trị của biểu thức B = n4 – n3 – 6n2 + 7n – 21 là số nguyên tố
3. Cho A = x4 + 4 và B = x4 + x2 + 1
a) Tìm GTLN của A - B
b) Phân tích A và B thành nhân tử
c) Tìm các số tự nhiên x để A và B cùng là số nguyên tố .
4. Tìm n ∈ N để : a) A = n.2n+1 ⋮ 3
b) B = 12n2-5n – 25 là số ngưên tố.
c) C = 8n2+10 n+ 3 là số nguyên tố
d) D = (n2+3n)/ 4 là số ngyên tố
5. Chứng minh ∀ số tự nhiên n khác không thì :
a) Số (6n + 1) và số (5n + 1) nguyên tố cùng nhau
b) Số (2n - 1) và số (2n + 1) nguyên tố cùng nhau
6. a) Tìm a N để (a + 1) ; (4a2 + 8a + 5) và (6a2 + 12a + 7) đồng thời là các số nguyên tố .
b) Chứng minh : nếu p là số nguyên tố khác 3 thì số A = 3n + 2014 + 2012p2 là hợp số ,với n N
7. Chứng minh rằng với mỗi số nguyên tố p đều tồn tại vô số số tự nhiên n sao cho2n - n ⋮ p
8. Tìm tất cả các số nguyên tố p sao cho p2 + 14 là số nguyên tố.
9. Cho p ≥ 7 là số nguyên tố. CMR: 11...1( p-1 chữ số 1) ⋮ p.
10. Cho 4 số nguyên dương a , b , c , d thỏa mãn : a2 + b2 = c2 + d2
Chứng minh a + b + c + d là hợp số
11. Tìm số tự nhiên n sao cho số p = n3 – n2 – 7n + 10 là số nguyên tố.
Với giá trị nào của a thì 7a + 1 và 8a + 3 là 2 số nguyên tố cùng nhau
Tìm số tự nhiên n để: \(n^{2009}+n^{2008}+1\) là số nguyên tố
Tìm tất cả các giá trị nguyên của a để đa thức: f(x)=(x+a).(x+10)+1 phân tích được thành tích của 2 đa thức bậc nhất có hệ số nguyên
Tìm tất cả các giá trị nguyên của a để đa thức: f(x)=(x+a).(x+10)+1 phân tích được thành tích của 2 đa thức bậc nhất có hệ số nguyên
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)