Tìm tất cả các cặp số tự nhiên (n;z) thỏa mãn phương trình: \(2^n+12^2=z^2-3^2\)
tìm STN n sao cho A=\(n^2+3n+7\) là số chính phương
là số nguyên tố
Tìm số tự nhiên a sao cho \(a+a^2+a^3+a^4+a^5+a^6\) là số chính phương
Cho phân số A = \(\dfrac{n^2+4}{n+5}\)
Hỏi có bao nhiêu số tự nhiên thỏa mãn 1\(\le\)n\(\le\)2020 sao cho A là phân số chưa tối giản?
Tìm số tự nhiên m, n thỏa mãn \(3^{3m^2+6n-61}+4\) là số nguyên tố
Giả sử n là số tự nhiên lớn hơn 1sao cho 8n + 1 và 24n + 1 là số chính phương
CMR 8n + 3 là số nguyên tố
1.Giả sử n là số nguyên dương thỏa mãn điều kiện n2+n+3 là số nguyên tố.Cmr n:3 dư 1 và 7n2+6n+2017 không phải số chính phương
2.Tìm số tự nhiên n lớn nhất để số 431+42018+4n là số chính phương
3.Cho n là một số tự nhiên sao cho \(\dfrac{n^2-1}{3}\) là tích của hai số tự nhiên liên tiếp.Cmr n là tổng của hai số chính phương liên tiếp
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.