Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoa Mai

tìm nguyên hàm của các hàm số sau bằng phương pháp biến đổi

a) \(\int\frac{ln^2x+1}{2x}dx\)

b) \(\int sin^2xcos^3xdx\)

c) \(\int x^5\sqrt{x^2+1}dx\)

d) \(\int\frac{1}{1+\sqrt{x}}dx\)

Nguyễn Việt Lâm
4 tháng 4 2020 lúc 23:19

a/ Đặt \(lnx=t\Rightarrow\frac{dx}{x}=dt\)

\(\Rightarrow I=\int\frac{t^2+1}{2}dt=\int\left(\frac{1}{2}t^2+\frac{1}{2}\right)dt=\frac{t^3}{6}+\frac{t}{2}+C\)

\(=\frac{ln^3x}{6}+\frac{lnx}{2}+C\)

b/ \(I=\int sin^2x.cos^2x.cosxdx=\int sin^2x\left(1-sin^2x\right)cosxdx\)

Đặt \(sinx=t\Rightarrow cosxdx=dt\)

\(I=\int t^2\left(1-t^2\right)dt=\int\left(t^2-t^4\right)dt=\frac{t^3}{3}-\frac{t^5}{5}+C\)

\(=\frac{1}{3}sin^3x-\frac{1}{5}sin^5x+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
4 tháng 4 2020 lúc 23:24

c/ \(I=\int x^4\sqrt{x^2+1}xdx\)

Đặt \(\sqrt{x^2+1}=t\Rightarrow x^2=t^2-1\Rightarrow xdx=tdt\)

\(\Rightarrow I=\int\left(t^2-1\right)^2.t.tdt=\int\left(t^4-2t^2+1\right)t^2dt\)

\(=\int\left(t^6-2t^4+t^2\right)dt=\frac{1}{7}t^7-\frac{2}{5}t^5+\frac{1}{3}t^3+C\)

\(=\frac{1}{7}\sqrt{\left(x^2+1\right)^7}-\frac{2}{5}\sqrt{\left(x^2+1\right)^5}+\frac{1}{3}\sqrt{\left(x^2+1\right)^3}+C\)

d/ Đặt \(1+\sqrt{x}=t\Rightarrow x=\left(t-1\right)^2\Rightarrow dx=2\left(t-1\right)dt\)

\(\Rightarrow I=\int\frac{2\left(t-1\right)dt}{t}=\int\left(2-\frac{2}{t}\right)dt=2t-2lnt+C\)

\(=2\left(1+\sqrt{x}\right)-2ln\left(1+\sqrt{x}\right)+C\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Trần Phát
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
nanako
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phan thu trang
Xem chi tiết
Trần Thị Hằng
Xem chi tiết