Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính :
a) \(\int x\ln\left(1+x\right)dx\)
b) \(\int\left(x^2+2x-1\right)e^xdx\)
c) \(\int x\sin\left(2x+1\right)dx\)
d) \(\int\left(1-x\right)\cos xdx\)
Tìm các nguyên hàm sau:
a) \(\int (3x^2-2x-4)dx \)
b) \(\int(\sin3x-\cos4x)dx \)
c) \(\int(e^{-3x}-4^x)dx \)
d) \(\int\ln(x)dx \)
e) \(\int(x.e^x)dx \)
f) \(\int(x+1).\sin(x)dx \)
g) \(\int x.\ln(x)dx \)
Tính các nguyên hàm sau :
a) \(\int x\left(3-x\right)^5dx\)
b) \(\int\left(2^x-3^x\right)^2dx\)
c) \(\int x\sqrt{2-5x}dx\)
d) \(\int\dfrac{\ln\left(\cos x\right)}{\cos^2x}dx\)
e) \(\int\dfrac{x}{\sin^2x}dx\)
\(\int\dfrac{x+1}{\left(x-2\right)\left(x+3\right)}dx\)
h) \(\int\dfrac{1}{1-\sqrt{x}}dx\)
i) \(\int\sin3x\cos2xdx\)
k) \(\int\dfrac{\sin^3x}{\cos^2x}dx\)
l) \(\int\dfrac{\sin x\cos x}{\sqrt{a^2\sin^2x+b^2\cos^2x}}dx\) (\(a^2\ne b^2\))
1, \(\int\dfrac{x}{1-cos2x}dx\)
2, \(\int cos2x.e^{3x}dx\)
3, \(\int\left(2x+1\right)ln^2dx\)
4, \(\int\left(2x-1\right)cosxdx\)
5, \(\int\left(x^2+x+1\right)e^xdx\)
6, \(\int\left(2x+1\right)ln\left(x+2\right)dx\)
Tính các nguyên hàm sau bằng phương pháp đổi biến số :
a) \(\int x^2\sqrt[3]{1+x^3}dx\) với \(x>-1\) (đặt \(t=1+x^3\))
b) \(\int xe^{-x^2}dx\) (đặt \(t=x^2\))
c) \(\int\dfrac{x}{\left(1+x^2\right)^2}dx\) (đặt \(t=1+x^2\))
d) \(\int\dfrac{1}{\left(1-x\right)\sqrt{x}}dx\) (đặt \(t=\sqrt{x}\))
e) \(\int\sin\dfrac{1}{x}.\dfrac{1}{x^2}dx\) (đặt \(t=\dfrac{1}{x}\))
g) \(\int\dfrac{\left(\ln x\right)^2}{x}dx\) (đặt \(t=\ln x\))
h) \(\int\dfrac{\sin x}{\sqrt[3]{\cos^2x}}dx\) (đặt \(t=\cos x\) )
i) \(\int\cos x\sin^3xdx\) (đặt \(t=\sin x\))
k) \(\int\dfrac{1}{e^x-e^{-x}}dx\) (đặt \(t=e^x\) )
l) \(\int\dfrac{\cos x+\sin x}{\sqrt{\sin x-\cos x}}dx\) (đặt \(t=\sin x-\cos x\))
1, \(\int\dfrac{lnxdx}{\sqrt{x}}\)
2, \(\int ln\left(x+\sqrt{x^2+1}\right)dx\)
3, \(\int\left(x^2+2x+3\right)dx\)
\(\int\dfrac{1}{cosx.cos\left(x+\dfrac{\pi}{4}\right)}dx\)
\(\int\dfrac{1}{x^3\left(1+x^2\right)}dx=\dfrac{a}{x^2}+blnx+cln\left(1+x^2\right).S=a+b+c=?\)
\(\int\dfrac{5-3x}{\left(x^2-5x+6\right)\left(x^2-2x+1\right)}dx=\dfrac{a}{x-1}-ln\left(\dfrac{x-b}{x-c}\right)+C.P=2a+b\)
Tính \(I=\int x.\ln\left(x+1\right)dx\)
1, \(\int sin2x.e^{3x}dx\)
2, \(\int\dfrac{x^4dx}{\left(x^2-1\right)^2}\)
3, \(\int e^x.cos^2xdx\)
4, \(\int e^{2x}sin^2xdx\)
5, \(\int e^{-x}.cos^3xdx\)