Cho x,y,z là 3 số nguyên dương , nguyên tố cùng nhau và \(\left(x-z\right)\left(y-z\right)=z^2\) . Đặt a = xyz . Chứng minh rằng a là số chính phương
Cho 3 số dương x, y, z thỏa mãn \(x^2=yz\), \(y^2=xz\).
Tính giá trị biểu thức \(P=\left(x^3+y^3+z^3\right)\left(\dfrac{1}{\left(x+y+z\right)^3}\right)\)
cho x,y,z khac 0 va\(\dfrac{x+3y-z}{z}\)= \(\dfrac{y+3z-x}{x}\)=\(\dfrac{z+3x-y}{y}\)
Tính P = \(\left(\dfrac{x}{y}+3\right)\)\(\left(\dfrac{y}{z}+3\right)\)\(\left(\dfrac{z}{x}+3\right)\)
Cho \(2\left(x-3\right)=3\left(y+2\right);5\left(2-z\right)=3\left(y+z\right)\)và \(2x-3y+z=-4\). Tìm giá trị của \(B=x-y+z\)
a,\(\left|3x-4\right|+\left|3y+5\right|=0\) b,\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\) c,\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
d,\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\) e,\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\)
Giups mình giải bài tìm x,y,z này nhé!!! Cảm ơn nhiều ạ!!!
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
tìm các số nguyên dương x;y;z thỏa mãn \(\left(x-y\right)^3+\left(y-z\right)^2+2015.|x-z|=2017\)
Cho \(\text{ (x+y)}\div\left(5-z\right)\div\left(y+z\right)\div\left(9+y\right)=3\div1\div2\div5\) kết quả của x, y, z là
Tìm x,y,z trong các tỉ lệ thức sau: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)v\text{à}2x+3y-z=50\)