Bất phương trình ( 3x - 27 )( x2 - x - 20 ) ≥ 0 có tất cả bao nhiêu nghiệm nguyên thuộc đoạn [ -40 ; 40 ] ?
Tìm tất cả các số nguyên a để phương trình x2 - (3+2a)x + 40 - a = 0 có nghiệm nguyên
1. Cho hàm số \(y=\left|\dfrac{x^2+\left(m+2\right)x-m^2}{x+1}\right|\) . GTLN của hàm số trên đoạn \(\left[1;2\right]\)
có GTNN bằng
2.Tìm tham số thực \(m\) để phương trình
\(\left(4m-3\right)\sqrt{x+3}+\left(3m-4\right)\sqrt{1-x}+m-1=0\) có nghiệm thực
3.Tìm \(m\) để \(x^2+\left(m+2\right)x+4=\left(m-1\right)\sqrt{x^3+4x}\) , (*) có nghiệm thực
4.Cho hàm số \(y=f\left(x\right)\) liên tục và có đạo hàm \(f'\left(x\right)=\left(x+2\right)\left(x^2-9\right)\left(x^4-16\right)\) trên \(R\) . Hàm số đồng biến trên thuộc khoảng nào trên các khoảng sau đây
\(A.\left(1-\sqrt{3};1+\sqrt{3}\right)\)
B.(\(3;\)+∞)
\(C.\)(1;+∞)
D.\(\left(-1;3\right)\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}2x^3-4x^2+3x-1=2x^3\left(2-y\right)\sqrt{3-2y}\\\left(\sqrt{x\sqrt{3-2y}-\sqrt{x}}\right)^2\left(\sqrt{x\sqrt{3-2y}+2}+\sqrt{x+1}\right)=4\end{matrix}\right.\)
Tìm tập các giá trị của m sao cho phương trình \(m\sqrt{x^2+2}=x+m\) có 2 nghiệm phân biệt.
Trong không gian OxyzOxyz, cho mặt cầu (S):x2+y2+z2−2x−2y−7=0(S):x2+y2+z2−2x−2y−7=0 và điểm M(2;0;1)M(2;0;1). Mặt phẳng (P)(P) thay đổi đi qua MM và cắt mặt cầu (S)(S) theo giao tuyến là một đường tròn có bán kính bằng rr. Khi rr đạt giá trị nhỏ nhất, khoảng cách từ OO đến mặt phẳng (P)(P) bằng
1 gọi y=\(y_0\) và x=\(x_0\) lần lượt là các đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y=\(\frac{3x^2-10x+3}{9-x^2}\) . Khi đó hiệu \(x_0-y_0\) là
2 cho hàm số y=ax^4+bx^2+c (a,b,c \(\in\) R) có đồ thị như hình vẽ bên dưới, mệnh đề nào sau đây đúng
A b+c=1 B b+c=-2 C b+c=-1 D b+c=-3
3 trong ko gian OXYZ , mp (P) đi qua M(-1;2;1) và song song với mp(Q):2x+y+2z+8=0 có phương trình là
4 Trong ko gian OXYZ, cho hai điểm M (2;3;-1) ,N (4;5;3) .Vecto nào dưới đây chỉ phương của đường thẳng đi qua gốc tọa độ O và trung điểm I của đoạn MN ?
A \(\overline{u}\left(1;1;2\right)\) B \(\overline{u}\left(6;8;2\right)\) C \(\overline{u}\left(3;4;1\right)\) D \(\overline{u}\left(3;4;2\right)\)
5 Tập nghiệm của pt \(2^{x^2+3x-4}=4^{x-1}\) là
6 một hình trụ tròn xoay có đường sinh bằng dg kính của đg tròn đáy và bằng 4.Diện tích xung quanh của hình trụ là
7 trong ko gian OXYZ, mặt phẳng R đi qua ba điểm không thẳng hàng A (1;0;0)B(0;2;0) C(0;0;3) Có phương trình là
8 cho hình chóp S.ABCD có đáy là hình chữ nhật SA vuông góc với mp (ABCD).Biết AB=a , AB=\(a\sqrt{3}\)
và SA=2\(a\sqrt{3}\) . góc giữa dg thẳng SC và mp (ABCD ) bằng
9 cho \(log_25=m,log_35=n\) . Khi đó \(log_65\) tính theo m và n là
10 cho khối cầu (S) có thể tích V=36\(\pi a^3\) . ính theo a bán kính r của khối cầu (S)
11 CHO ĐẠO HÀM F(x) có đạo hàm \(f^,\) (x)=\(\frac{1}{1-x}\) và f(0) =1. Tính f(5)
12 cho hình lang trụ tứ giác đều ABCD.\(A^,B^,C^,D^,\) Có cạnh đáy bằng a, biết đường chéo của mặt bên là \(a\sqrt{3}\) . Khi đó thể tích khối lăng trụ bằng
13 cho hàm số y=f(x) có bẳng biến thiên sau và cho biết đồ thị hàm số đó có bao mấy tiệm cận
A 3 B 1 C 4 D 2
14 CHo số phức z=a+bi . số phức z^2 có phần thực là
A a^2 +b^2 B a+b C a^2-b^2 D a-b
14 trong ko gian OXYZ, cho 3 điểm A(2;1;4), B(2;2;-6) , C (6;0;-1) . Tính tích vô hướng \(\overline{AB}.\overline{AC}\)
15 trong ko gain với hệ tọa độ OXYZ , cho điểm A (2;1;1) và mp (P) :2x-y+2z+1=0 .Phương trình mặt cầu tâm A và tiếp xúc với mp (P) là
1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1]
2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ
3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng
4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là
5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao tuyến của (P) và (Q) có một vecto chỉ phương là
A \(\overline{u}\) (1;-2;1) B \(\overline{u}\) (1;3;5) C \(\overline{u}\) (2;1-1) D \(\overline{u}\) (-1;3;-5)
6 trong ko gian oxyz cho điểm A(0;1;-2) .Tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) :-x-2y+2z-3=0 là
7 trong ko gain oxyz cho điểm A(1;0;2).Tọa độ điểm H là hình chiều vuông góc của điểm A trên đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{3}\) là
8 trong ko gian oxyz , mặt phẳng nào sau đây nhận vecto \(\overline{n}\) =(1;2;3) làm vecto pháp tuyến
A 2z-4z+6=0 B x+2y-3z-1=0 C x-2y+3z+1=0 D 2x+4y+6z+1=0
9 Trong ko gian oxyz , cho ba điểm A(2;1;-1),B(-1;0;4),C(0;-2;-1) .Phương trình nào sau đây là phương trình của mặt phẳng A và vuông góc BC
A :x-2y-5z+5=0 B x-2y-5z-5=0 C x-2y-5z=0 D 2x-y+5z-5=0
10 trong không gian oxyz , cho hai điểm A(4;1;0) ,B(2;-1;2).Trong các vecto sau , một vecto chỉ phương của đường thẳng AB là
A \(\overline{U}\) (3;0;-1) B \(\overline{u}\) (1;1;-1) C \(\overline{u}\) (2;2;0) D \(\overline{u}\) (6;0;2)
11 Trong ko gian oxyz, viết pt tham số của đường thẳng đi qua hai điểm A(1;2;-3) ,B(2;-3;1)
12 Trong ko gian oxyz, cho điểm A(-2;0;3) và mp (p) -2X+Y-Z+11=0.Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)
13 trong ko gian vói hệ tọa độ oxyz, cho điểm A(1;0;2).TỌA độ điểm \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}\frac{z+3}{3}\) là
1 nghiệm của bất phuong trình \(3^{x-2}\le243\) là
2 rong ko gian Oxyz cho ba điểm A (2;1;-1), B(-1;0;4), C(0;-2;-1).Phương trình nào dưới đây là pt mp đi qua A và vuông góc vói đường thẳng BC
A x-2y-5z+5=0
B x-2y-5z=0
C x-2y-5z-5=0
D 2x-y+5z-5=0
3 Cho hai điểm A(1;0;-3) và B (3;2;1). Phương trinh mặt cầu đường kính AB là
4 Trong ko gian Oxyz, cho đường thẳng d \(\left\{{}\begin{matrix}x=1-t\\y=2t\\z=1+t\end{matrix}\right.\) và mặt phẳng (P) x+2y-2z+2. Tọa độ giao điểm của đường thẳng d và mặt phẳng (P) là
A (2;2;0)
B (0;-2;0)
C (0;2;0)
D (2;-2;0)
5 Từ thành phố A tới tp B có 3 con đường , từ tp B tới tp C có 4 con đường. Hỏi có bao nhiêu cách đi từ A tới C qua B
6 Tìm modun của số phức z thỏa mãn \(5\overline{z}-z\left(2-i\right)=2-6i\) với i là đơn vị ảo
7 Tìm phần ảo của số phức z , biết (1+i)z=3z-i
8 Tim các số thực x,y thỏa mãn 2x-1+(1-2y)i=2-x+(3y+2)i
9 ập hợp tấ cả các điểm biểu diễn các số phức z thỏa mãn \(/\overline{z}+2-i/=4\) là đường tròn tâm I và bán kính R lần lượt là
10 Trong ko gian Oxyz khoảng cách từ âm mặt cầu x^2 +y^2 +z^2 -2x-4y-4z+3=0 đến mặt phẳng \(\alpha\) :x+2y-2z-4=0 bằng
A.3
B.1
C.13/3
D 1/3