Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
asuna

Tìm nghiệm của pt: x4+2x3+x2+2x+1=0

DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 3 2019 lúc 8:24

Xét \(x=0\) không phải là nghiệm của phương trình .

Chia cả 2 vế cho \(x^2\) ta được :

\(x^2+2x+1+\frac{2}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+\left(2x+\frac{2}{x}\right)+1=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+2\left(x+\frac{1}{x}\right)-1=0\)

Đặt \(x+\frac{1}{x}=a\) . Phương trình trở thành :

\(a^2+2a-1=0\)

\(\Delta=4+4=8\)

\(\Rightarrow\left\{{}\begin{matrix}a_1=\frac{-2+2\sqrt{2}}{2}=-1+\sqrt{2}\\a_2=\frac{-2-2\sqrt{2}}{2}=-1-\sqrt{2}\end{matrix}\right.\)

Với \(a=-1+\sqrt{2}\)

\(\Rightarrow x+\frac{1}{x}=-1+\sqrt{2}\)

\(\Rightarrow x^2+\left(1-\sqrt{2}\right)x+1=0\)

Phương trình vô nghiệm .

Với \(a=-1-\sqrt{2}\)

\(\Rightarrow x+\frac{1}{x}=-1-\sqrt{2}\)

\(\Rightarrow x^2+\left(1+\sqrt{2}\right)x+1=0\)

\(\Delta=3+2\sqrt{2}-4=2\sqrt{2}-1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-\left(1+\sqrt{2}\right)+\sqrt{2\sqrt{2}-1}}{2}\\x_1=\frac{-\left(1+\sqrt{2}\right)-\sqrt{2\sqrt{2}-1}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
14 tháng 3 2019 lúc 0:27

Nghiệm rất xấu nên không thể tách một cách đẹp mắt, dùng casio ta tách được biểu thức như sau:

\(\left(x^2+\left(\sqrt{2}+1\right)x+1\right)\left(x^2-\left(\sqrt{2}-1\right)x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+\left(\sqrt{2}+1\right)x+1=0\\x^2-\left(\sqrt{2}-1\right)x+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{-\left(\sqrt{2}+1\right)\pm\sqrt{2\sqrt{2}-1}}{2}\)


Các câu hỏi tương tự
Phương Nguyễn 2k7
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Trương Võ Thanh Ngân
Xem chi tiết
Phương Nguyễn 2k7
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Vũ Thị Minh Ngọc
Xem chi tiết
Nguyen Nhuong
Xem chi tiết
Shinichi Kudo
Xem chi tiết
super potato
Xem chi tiết