\(0\le cos^2\left(x-\frac{\pi}{4}\right)\le1\Rightarrow1\le y\le2\)
\(y_{min}=1\) khi \(cos\left(x-\frac{\pi}{4}\right)=0\)
\(y_{max}=2\) khi \(cos^2\left(x-\frac{\pi}{4}\right)=1\)
\(0\le cos^2\left(x-\frac{\pi}{4}\right)\le1\Rightarrow1\le y\le2\)
\(y_{min}=1\) khi \(cos\left(x-\frac{\pi}{4}\right)=0\)
\(y_{max}=2\) khi \(cos^2\left(x-\frac{\pi}{4}\right)=1\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; b) y = \(\tan\left(2x+\frac{\pi}{3}\right)\).
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; b) y = \(\tan\) \(\left(2x+\frac{\pi}{3}\right)\).
xét tính chẵn lẻ của các hàm số sau : a) y = \(\cos\left(x-\frac{\pi}{4}\right)\) ; b) y = \(\tan\left|4\right|\) ; c) y = \(\tan x-\sin2x\)
xét tính chẵn lẻ của các hàm số sau : a) y = \(\cos\left(x-\frac{\pi}{4}\right)\) ; b) y = \(\tan\left|4\right|\) ; c) y = \(\tan x-\sin2x\)
xét tính chẵn lẻ của các hàm số sau : a) y = \(\cos\left(x-\frac{\pi}{4}\right)\) ; b) y = \(\tan\left|4\right|\) ; c) y = \(\tan x-\cos2x\)
xét tính chẵn lẻ của các hàm số sau : a) y = \(\cos\left(x-\frac{\pi}{4}\right)\) ; b) y = \(\tan\left|4\right|\) ; c) y = \(\tan x-\sin2x\)
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = 2\(\cos\)(x + \(\frac{\pi}{3}\)) ; b) y = \(\sqrt{1-\sin\left(x^2\right)}\) \(-\)1 ; c) y = 4\(\sin\sqrt{x}\)