\(B=\dfrac{3x^2}{3\left(x^4+x^2+1\right)}=\dfrac{x^4+x^2+1-x^4+2x^2-1}{3\left(x^4+x^2+1\right)}=1-\dfrac{\left(x^2-1\right)^2}{3\left(x^4+x^2+1\right)}\le1\)
Dấu "=" xảy ra khi \(x=\pm1\)
\(B=\dfrac{3x^2}{3\left(x^4+x^2+1\right)}=\dfrac{x^4+x^2+1-x^4+2x^2-1}{3\left(x^4+x^2+1\right)}=1-\dfrac{\left(x^2-1\right)^2}{3\left(x^4+x^2+1\right)}\le1\)
Dấu "=" xảy ra khi \(x=\pm1\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
cho biểu thức A= \(\dfrac{x^4+2}{x^6+1}+\dfrac{x^2-1}{x^4-x^2+1}-\dfrac{x^2+3}{x^4+4x^2+3}\)
a) rút gọn A
b) tìm giá trị Max của M
cho x,y,z là các số nguyên dương với \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm max : \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\)
Tìm max của: \(\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\)
tìm min và max của hàm số \(f\left(x\right)=\dfrac{\sqrt{2x-x^2}+2}{1+\sqrt{2x-x^2}}\) trên đoạn \(\left[\dfrac{1}{4};\dfrac{3}{2}\right]\)
Tìm min, max của: \(P=\sqrt[4]{1+x}+\sqrt[4]{1-x}+\sqrt[4]{1-x^2}\)
1.Tìm Max,Min của \(A=\dfrac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}\)(y khác 0)
2.Tìm a,b dể \(P=\dfrac{ãx^2+b}{x^2+1}\). Đặt GTNN=4 và GTLN=-1
Cho x,y e R t/m x2+y2=1.
Tìm max \(P=\dfrac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)
Tìm tập nghiệm của bất phương trình
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) \(\dfrac{\left(x-1\right)\left(2x-5\right)\left(x+1\right)}{x+4}< 0\)