Lời giải
a) Ta có:
\(A=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\)
\(=\frac{x^4+2}{(x^2+1)(x^4-x^2+1)}+\frac{(x^2-1)(x^2+1)}{(x^2+1)(x^4-x^2+1)}-\frac{x^2+3}{x^4+3x^2+x^2+3}\)
\(=\frac{x^4+2}{(x^2+1)(x^4-x^2+1)}+\frac{x^4-1}{(x^2+1)(x^4-x^2+1)}-\frac{x^2+3}{x^2(x^2+3)+(x^2+3)}\)
\(=\frac{2x^4+1}{(x^2+1)(x^4-x^2+1)}-\frac{(x^2+3)}{(x^2+1)(x^2+3)}=\frac{2x^4+1}{(x^2+1)(x^4-x^2+1)}-\frac{1}{x^2+1}\)
\(=\frac{2x^4+1}{(x^2+1)(x^4-x^2+1)}-\frac{x^4-x^2+1}{(x^2+1)(x^4-x^2+1)}\)
\(=\frac{x^4+x^2}{(x^2+1)(x^4-x^2+1)}=\frac{x^2(x^2+1)}{(x^2+1)(x^4-x^2+1)}=\frac{x^2}{x^4-x^2+1}\)
b)
Áp dụng BĐT Cô-si: \(x^4+1\geq 2\sqrt{x^4}=2x^2\)
\(\Rightarrow A=\frac{x^2}{x^4+1-x^2}\leq \frac{x^2}{2x^2-x^2}=1\)
Vậy \(A_{\max}=1\Leftrightarrow x^4=1\Leftrightarrow x=\pm 1\)