cho B=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
a)rút gọn B
b)tìm x để B =8/3
c)tìm Min ,Max của B
tìm min và max của hàm số \(f\left(x\right)=\dfrac{\sqrt{2x-x^2}+2}{1+\sqrt{2x-x^2}}\) trên đoạn \(\left[\dfrac{1}{4};\dfrac{3}{2}\right]\)
tìm đkxđ và rút gọn p
tìm max m=p-x+ 3
tìm min A =P+1/\(\sqrt{x}\)+3
p=(\(\frac{\sqrt{x}}{\sqrt{x-2}}+\frac{\sqrt{x}}{\sqrt{x+2}}\))\(\frac{x-4}{\sqrt{4x}}\)
bài 1:tìm min A=\(\dfrac{5x^2-12x+8}{\left(x-1\right)^2}\)
bài 2: chứng minh với mọi n\(\in\)N* và n\(\ge\)3:
\(\dfrac{1}{9}+\dfrac{1}{25}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
bài 3: tìm min, max của A=2x+3y biết \(2x^2+3y^2\le5\)
bài 4: tìm min của B=\(\sqrt{x-1}+\sqrt{5-x}\)
và A=\(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
Cho x, y > 0 thoản mãn \(\sqrt{xy}\) = 10. Tìm min, max của A = (x4 + 1)(y4 + 1)
cho \(\sqrt{x-3}-\sqrt[3]{y^2+5y+7}=\sqrt{y-1}-\sqrt[3]{x^2+x+1}\) . tìm max Q=\(y^2-x^2+3x+4\sqrt{y}+4\)
Với x>4. Tìm Min của P=\(\frac{\left(x+\sqrt{x}\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
1. cho biểu thức
P=\(\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
a, rút gọn biểu thức
b, tìm giá trị của P khi x=\(9+4\sqrt{5}\)
Tìm min và max của: \(A=\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)