\(y'=f\left(x\right)=6x^2-2mx+2\) (1)
Để hàm số đồng biến trên \(\left(-2;0\right)\Leftrightarrow f\left(x\right)\ge0\) ; \(\forall x\in\left(-2;0\right)\)
\(\Leftrightarrow6x^2+2\ge2mx\Leftrightarrow\frac{3x^2+1}{x}\le m\Leftrightarrow m\ge\max\limits_{\left(-2;0\right)}\frac{3x^2+1}{x}\)
Xét \(g\left(x\right)=\frac{3x^2+1}{x}\Rightarrow g'\left(x\right)=\frac{3x^2-1}{x^2}=0\Rightarrow x=-\frac{1}{\sqrt{3}}\)
Từ BBT ta thấy \(\max\limits_{\left(-2;0\right)}g\left(x\right)=g\left(-\frac{1}{\sqrt{3}}\right)=-2\sqrt{3}\)
\(\Rightarrow m\ge-2\sqrt{3}\)