TXĐ: `D=RR \\ {m/2}`.
`y'=(m^2+4)/((2x-m)^2)`
Hàm số đồng biến trên `(-2;3] <=>` $\begin{cases}m^2+4>0 \forall m\\ \dfrac{m}{2} \notin (-2;3]\\\end{cases}$ `<=>` $\begin{cases}m>6\\m≤-4\\\end{cases}$
Vậy `m>6 \vee m <= -4` thỏa mãn.
TXĐ: `D=RR \\ {m/2}`.
`y'=(m^2+4)/((2x-m)^2)`
Hàm số đồng biến trên `(-2;3] <=>` $\begin{cases}m^2+4>0 \forall m\\ \dfrac{m}{2} \notin (-2;3]\\\end{cases}$ `<=>` $\begin{cases}m>6\\m≤-4\\\end{cases}$
Vậy `m>6 \vee m <= -4` thỏa mãn.
Cho hàm số \(y=\dfrac{mx-2m-3}{x-m}\) với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên các khoảng xác định. Tìm số phần tử của S
Tổng tất cả các giá trị của tham số m để hàm số \(y=\dfrac{1}{5}m^2x^5-\dfrac{1}{3}mx^3+10x^2-\left(m^2-m-20\right)x+1\) đồng biến trên R bằng bao nhiêu?
1. Tìm tất cả các giá trị thực của tham số m để hàm số y= mx - sin3x đồng biến trên khoảng ( trừ vô cùng ; cộng vô cùng) 2. Tìm tất cả các giá trị thực của tham số m để hàm số y = x + mcosx đồng biến trên khoảng( trừ vô cùng ; cộng vô cùng)
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y=|3x⁴-mx³+6x²+m-3| đồng biến trên khoảng (0- dương vô cùng)
Tìm các giá trị nguyên của m để hàm số y= 1/3x³ - mx² + (2m+3)x +1 .đồng biến trên R
có bao nhiêu giá trị nguyên âm của tham số m để hàm số y= x3+mx-\(\dfrac{1}{5x^5}\)đồng biến trên (0;-\(\infty\)).
cho hàm số y= Mx +4M / x+M với M là tham số . goị S là tập hợp tất cả các giá trị nguyên của M để hàm số nghịch biến trê khoảng không xác định . tìm phần tử của S
A 4 B vô số C 3 D5
Cho hàm số \(y=f\left(x\right)\) liên tục trên R, có đạo hàm \(f'\left(x\right)=x\left(x-1\right)^2\left(x-2\right)\) . Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho hàm số \(y=f\left(\dfrac{x+2}{x+m}\right)\) đồng biến trên khoảng \(\left(10;+\infty\right)\) . Tính tổng các phần tử của S.
1. Tìm tất cả các giá trị của tham số m để hàm số y = (m+2)/3.x^3 -(m+2)x^2 -(3m-1)x+1 đồng biến trên khoảng ( âm vô cùng ; cộng vô cùng)