\(x^2-4x+m+2=0\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
Theo đề bài ta có \(x_1^3+x_2^3=28\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=28\)
\(\Leftrightarrow4^3-12\left(m+2\right)=28\)
\(\Leftrightarrow12\left(m+2\right)=36\)
\(\Leftrightarrow m+2=3\)
\(\Leftrightarrow m=1\)