a: \(\text{Δ}=\left(2m+2\right)^2-4\left(-2m+6\right)\)
\(=4m^2+8m+4+8m-24=4m^2+16m-20\)
=4(m+5)(m-1)
Để phương trình có hai nghiệm dương phân biệt thì
(m+5)(m-1)>0 và 2(m+1)>0 và -2m+6>0
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -5\end{matrix}\right.\\-1< m< 3\end{matrix}\right.\Leftrightarrow1< m< 3\)
b: \(\left\{{}\begin{matrix}x_1\in\left[1;4\right]\\x_2\in\left[1;4\right]\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2< =x_1+x_2< =8\\1< =x_1x_2< =16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2< =2m+2< =8\\1< =-2m+6< =16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0< =2m< =6\\-5< =-2m< =10\end{matrix}\right.\)
=>0<=m<=3 và 5/2>=m>=-5
=>\(0< =m< =\dfrac{5}{2}\)