Tìm m để phương trình sau có nghiệm dương:
\(x^2+\dfrac{1}{x^2}+3x+\dfrac{3}{x}+m-2=0\)
giúp mik với ạ mik đang cần gấp. Mik cảm ơn nhiều
Cho hàm số: \(y=x^2-3x-4\) có đồ thị là (P).
a) Lập bảng biến thiên và vẽ (P).
b) Tìm m để phương trình \(\left|x^2-3x-4\right|=2m-1\) có bốn nghiệm phân biệt.
c) Tìm m để phương trình \(x^2-3\left|x\right|-4=m\) có 3 nghiệm.
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Tìm m trên phương trình : \(x^2-2mx+m-3=0\)
có 2 nghiệm thuộc \(\left(1;+\infty\right)\).
-----
Bài này mình đã giải 2 TH ra \(m\le-2\), còn TH khi \(\left(1;+\infty\right)\) trùng m, nghĩa là m = 1. Vậy TH3 thì f(x) nhận giá trị nào vậy ạ ?
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
Tập hợp các giá trị tham số m để phương trình \(x^3+ \left(2m+5\right)x^2+2\left(m+3\right)x-4m-12=0\)
có ba nghiệm phân biệt lớn hơn -1 là (a;b)/ {c}. Tính T = 2a - 3b + 6c
1. Cho hàm số \(y=x^2-5x+4\)
a) Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-5x+4\right|-2=m\) có bốn nghiệm phân biệt.
c) Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\left|x^2-5x+4\right|\) với x ∈ [0;5]
2. Cho hàm số \(y=-2x^2+4x\)
a) Vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-2x\right|=m\) có ba nghiệm phân biệt.
Tìm m để phương trình có 2 nghiệm phân biệt
\(\left(x^2-2x+m\right)\sqrt{-x^2+3x-2}=0\)
cho biết tập hợp các giá trị của tham số để phương trình \(2\left(x^2+\dfrac{1}{x^2}\right)-3\left(x+\dfrac{1}{x}\right)-2m-1=0\)
có nghiệm là S = \(\left[\dfrac{-b}{a};+\infty\right]\)
với a, b là các số nguyên dương a/b là phân số tối giản. Tính a + b
1. Tìm m để phương trình sau có nghiệm
a, \(2\left(x^2-2x\right)-\sqrt{x^2-2x+4}-m=0\) trên \(\left[-1;2\right]\)
b, \(\sqrt{\left(x+2\right)\left(7-x\right)}+x^2-5x-m=0\)
2. Tìm Min \(y=|x^2+2x-m|\) trên \(\left[0;2\right]\)
3. Tìm Max \(y=|x^2-4x+2m-1|\) trên \(\left[-1;3\right]\)
4. Tìm m để \(x^2-2x-m\le0,\forall x\in\left[-1;3\right]\)
5. Tìm m để tồn tại \(x\) thỏa mãn \(3\sqrt{4x-x^2}+m>4x-x^2\)