Đề viết sai bạn nhé. Phương trình là \(mx^2-2\left(3-m\right)x+m-4=0\) mới đúng.
ĐK: \(m\ne0\)
Để phương trình có nghiệm thì \(\Delta'=b'^2-ac=9-2m\ge0\Leftrightarrow m\le\dfrac{9}{2}\)
a) Phương trình có hai nghiệm đối nhau nên \(x_1+x_2=0\Leftrightarrow-\dfrac{-2\left(3-m\right)}{m}=0\Leftrightarrow m=3\) (thỏa mãn)
Vậy $m=3$ là giá trị cần tìm.
b) Phương trình có đúng một nghiệm âm nên nghiệm còn lại là không âm.
Vậy hai nghiệm trên trái dấu nhau.
Để phương trình có nghiệm trái dấu thì \(P=x_1x_2< 0\Leftrightarrow\dfrac{m-4}{m}< 0\Leftrightarrow0\le m\le4\)