Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dung Ho

Chờ phương trình 2.x^2-4.x-m=0 (m là tham số) a/ Tìm m để phương trình có 2 nghiệm phân biệt b/ Lập phương trình có 2 nghiệm là t1= 1/x1 , t2=1/x2 với x1;x2 là 2 nghiệm của phương trình trên

Lương Đại
6 tháng 4 2023 lúc 22:24

\(2x^2-4x-m=0\left(1\right)\)

a, Để pt (1) có hai nghiệm phân biệt thì Δ' > 0

\(\Rightarrow2+2m>0\Leftrightarrow m>-1\)

b, Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

Vì \(t_1,t_2\) là hai nghiệm của Phương trình \(x^2-Sx+P=0\) nên theo viét đảo có :

\(\left\{{}\begin{matrix}S=t_1+t_2=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\P=t_1.t_2=\dfrac{1}{x_1x_2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{x_1+x_2}{x_1x_2}\\P=\dfrac{1}{x_1x_2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{2}{-\dfrac{m}{2}}\\P=\dfrac{1}{-\dfrac{m}{2}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=-\dfrac{4}{m}\\P=-\dfrac{2}{m}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình cần tìm là : \(x^2+\dfrac{4}{m}.x-\dfrac{2}{m}=0\) hay \(x^2m+4x-2=0\)


Các câu hỏi tương tự
nguyễn văn quốc
Xem chi tiết
Music Hana
Xem chi tiết
Bi Vy
Xem chi tiết
nguyễn văn quốc
Xem chi tiết
Yume.bae
Xem chi tiết
Võ Văn Kiệt
Xem chi tiết
hangg imm
Xem chi tiết
Phan Trần Hạ Vy
Xem chi tiết
ngocha_pham
Xem chi tiết