\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)}=\lim\limits_{x\rightarrow2}\left(x+1\right)=3\)
Để hàm số liên tục tại x=2
\(\Rightarrow\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)\Leftrightarrow m^2+4m-1=3\)
\(\Leftrightarrow m^2+4m-4=0\Rightarrow m=-2\pm2\sqrt{2}\)