Lời giải:
Cái này chỉ tính được giới hạn 1 bên thôi
\(\lim\limits_{x\to 1-}f(x)=\lim\limits_{x\to 1-}\frac{x^2+1}{1-x}=+\infty \) do $\lim\limits_{x\to 1-}(x^2+1)=2>0$ và $1-x>0$ với $x<1$
\(\lim\limits_{x\to 1+}\sqrt{2x-2}=\sqrt{2.1-2}=0\)
Lời giải:
Cái này chỉ tính được giới hạn 1 bên thôi
\(\lim\limits_{x\to 1-}f(x)=\lim\limits_{x\to 1-}\frac{x^2+1}{1-x}=+\infty \) do $\lim\limits_{x\to 1-}(x^2+1)=2>0$ và $1-x>0$ với $x<1$
\(\lim\limits_{x\to 1+}\sqrt{2x-2}=\sqrt{2.1-2}=0\)
1, \(f\left(x\right)\left\{{}\begin{matrix}\frac{x^2-2}{x-\sqrt{2}}\left(x\ne\sqrt{2}\right)\\2\sqrt{2}\left(x=\sqrt{2}\right)\end{matrix}\right.\)
2, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x-5}{\sqrt{2x-1}-3}\left(x>5\right)\\\left(x-5\right)^2+3\left(x\le5\right)\end{matrix}\right.\) tại x=5
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-1}{x-1}\Leftrightarrow x< 1\\mx+2\Leftrightarrow x\ge1\end{matrix}\right.\)
Xét tính liên tục của hàm số sau trên tập xác định của nó:
a, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2+2x-1}{x^2-1}\left(x\ne1\right)\\2\left(x=1\right)\end{matrix}\right.\)
b, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{2-7x+5x^2-x^3}{x^2-3x+2}\left(x>2\right)\\2x^2-6\left(x< 2\right)\\2\left(x=2\right)\end{matrix}\right.\)
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{1}{x-1}-\dfrac{3}{x^3-1}\Leftrightarrow x>1\\mx+2\Leftrightarrow x\le1\end{matrix}\right.\)
Xét tính liên tục của hàm số sau tại các điểm đã chỉ ra:
a, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2+2x-1}{x^2-1}\\2\end{matrix}\right.\)(x\(\ne\) \(\sqrt{2}\)) (x=\(\sqrt{2}\))
b, \(f\left(x\right)\left\{{}\begin{matrix}\frac{x-5}{\sqrt{2x-1}-3}\\\left(x-5\right)^2+3\end{matrix}\right.\)khi x>5 tại x=5
khi x\(\le\)5
Cho hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}\sqrt{x}+1;x\ge0\\2x;x< 0\end{matrix}\right.\)
và các dãy số \(\left(u_n\right)\) với \(\left(u_n\right)=\dfrac{1}{n},\left(v_n\right)\) với \(v_n=-\dfrac{1}{n}\)
Tính \(\lim\limits u_n,\lim\limits v_n,\lim\limits f\left(u_n\right)\) và \(\lim\limits f\left(v_n\right)\) ?
Từ đó có kết luận gì về giới hạn của hàm số đã cho khi x -> 0 ?
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}x^2-x+3\Leftrightarrow x\le1\\\dfrac{x+m}{x}\Leftrightarrow x>1\end{matrix}\right.\)
Cho f(x) thỏa mãn : \(_{\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5}\)
Tính I= \(\lim\limits_{x\rightarrow-1}\dfrac{\left(4f\left(x\right)+3\right)\left(\sqrt{4f\left(x\right)^2+2f\left(x\right)+4}\right)-2}{x^2-1}\)
Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}\)