Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}x^2-x+3\Leftrightarrow x\le1\\\dfrac{x+m}{x}\Leftrightarrow x>1\end{matrix}\right.\)
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-1}{x-1}\Leftrightarrow x< 1\\mx+2\Leftrightarrow x\ge1\end{matrix}\right.\)
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{1}{x-1}-\dfrac{3}{x^3-1}\Leftrightarrow x>1\\mx+2\Leftrightarrow x\le1\end{matrix}\right.\)
2, Cho \(f\left(x\right)=\left\{{}\begin{matrix}\sqrt{x^2-4x}khix\ge4\\x+akhix< 4\end{matrix}\right.\)
Tìm a để hàm số tồn tại giới hạn tại x=4
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}x^2,\left(x\ge0\right)\\x^2-1,\left(x< 0\right)\end{matrix}\right.\)
a) Vẽ đồ thị của hàm số \(f\left(x\right)\). Từ đó dự đoán về giới hạn của \(f\left(x\right)\) khi \(x\rightarrow0\)
b) Dùng định nghĩa chứng minh dự đoán trên
Cho hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}\sqrt{x}+1;x\ge0\\2x;x< 0\end{matrix}\right.\)
và các dãy số \(\left(u_n\right)\) với \(\left(u_n\right)=\dfrac{1}{n},\left(v_n\right)\) với \(v_n=-\dfrac{1}{n}\)
Tính \(\lim\limits u_n,\lim\limits v_n,\lim\limits f\left(u_n\right)\) và \(\lim\limits f\left(v_n\right)\) ?
Từ đó có kết luận gì về giới hạn của hàm số đã cho khi x -> 0 ?
tính lim f(x):
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+1}{1-x}\left(x< 1\right)\\\sqrt{2x-2}\left(x\ge1\right)\end{matrix}\right.\)
Tính các giới hạn sau:\(I_1=\lim\limits_{x\rightarrow1}\dfrac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)....\left(1-\sqrt[n]{x}\right)}{\left(1-x\right)^{n-1}}\)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)
Xét tính liên tục của hàm số sau trên tập xác định của nó:
a, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2+2x-1}{x^2-1}\left(x\ne1\right)\\2\left(x=1\right)\end{matrix}\right.\)
b, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{2-7x+5x^2-x^3}{x^2-3x+2}\left(x>2\right)\\2x^2-6\left(x< 2\right)\\2\left(x=2\right)\end{matrix}\right.\)