ta có:
\(x+y=x.y\)
\(\Rightarrow y=x.y-x=x.(y-1)\)
\(\Rightarrow x:y=y-1=x+y\)
\(\Rightarrow x=-1\)
\(thay\) \(x+y=x.y\)
\(\Rightarrow y-1=-y\Rightarrow2y=1\Rightarrow y=\dfrac{1}{2}\)
\(\Rightarrow x=-1;y=\dfrac{1}{2}\)
\(\dfrac{1}{y}=\dfrac{x}{4}-\dfrac{1}{2}=\dfrac{x-2}{4}=>y.\left(x-2\right)=4\)
Vì x ,y \(\in\) z nên x - 2 \(\in\) z , ta có bảng sau :
x | 1 | -1 | 2 | -2 | 4 | -4 |
x-2 | 4 | -4 | 2 | -2 | 1 | -1 |
y | 6 | -2 | 4 | 0 | 3 | 1 |
\(x-y=x.y\)
=> \(x=x.y+y=y.\left(x+1\right)\)
\(x:y=y.\left(x+1\right):y=x+1\)
=> \(x-y=x+1=>y=-1\)
\(x=\left(-1\right)\left(x+1\right)=>x=-x-1\)
=> \(2x=-1=>x=-\dfrac{1}{2}\)
Vậy x = \(-\dfrac{1}{2}\) ; y = \(-1\)
x – y = x.y ⇒ x = x.y + y = y.(x + 1)
x : y = y.(x + 1) : y = x + 1
⇒ x – y = x + 1 ⇒ y = −1
x = (-1)(x + 1) ⇒ x = − x – 1 ⇒ 2x = −1 ⇒ x = (-1)/2
Vậy x = −12;y = −1;x = −12;y = −1