Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Zin

Tìm hai chữ số tận cùng của 799 ; 3517

Thái Văn Đạt
5 tháng 4 2017 lúc 17:15

Mình hướng dẫn cho bạn 1 số còn số còn lại bạn tự làm nhé!

Trước hết thì tìm 2 chữ số tận cùng thực chất là xác định số dư khi số đó chia cho 100

Ở đây để đơn giản ta sẽ tìm số dư của số đó khi chia cho 4 và 25 sau đó kết hợp để tìm ra kết quả.

Bắt đầu chi tiết nhé: mình làm với \(7^{99}\)

Ta có:

- \(7^{99} \equiv (-1)^{99} \equiv -1\ (mod 4) \Rightarrow 7^{99}=4k-1\ với \ k\in \mathbb{Z}\)

\(7^{99}= 7.(7^2)^{49}=7.49^{49}\equiv 7.(-1)^{49}\equiv-7 \ (mod25) \Rightarrow 7^{99}= 25q-7 \ với \ q\in \mathbb{Z}\)

\(\Rightarrow 4k-1=25q-7 \Rightarrow q-2\ \vdots\ 4\ \ hay\ \ q=4t+2\\ \Rightarrow 7^{99}=25(4t+2)-7=100t+43\)

Vậy \(7^{99}\) có 2 chữ số tận cùng là 43

Aki Tsuki
6 tháng 4 2017 lúc 13:18

Tìm 2 chữ số tận cùng có nghĩa là số dư của số đó khi chia cho 100m ở đây ta áp dụng phép đồng dư là đc!

+) 799 : 100

Ta có: \(7^4\equiv1\left(mod100\right)\)

\(\left(7^4\right)^{24}\equiv1^{24}\equiv1\left(mod100\right)\)

\(7^{99}\equiv7^{96}.7^3\equiv1.43=43\left(mod100\right)\)

Vậy 2 chữ số tận cùng của 799 là 43

+) 3517 : 100

Ta có: \(3^{20}\equiv1\left(mod100\right)\)

\(\left(3^{20}\right)^{25}\equiv1^{25}\equiv1\left(mod100\right)\)

\(3^{517}\equiv3^{500}.3^{17}\equiv1.63=63\left(mod100\right)\)

Vậy 2 chữ số tận cùng của 3517 là 63


Các câu hỏi tương tự
Hà Linh
Xem chi tiết
그녀는 숙이다
Xem chi tiết
Đinh Chí Công
Xem chi tiết
Nấm Chanel
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Ki bo
Xem chi tiết
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết