Mình hướng dẫn cho bạn 1 số còn số còn lại bạn tự làm nhé!
Trước hết thì tìm 2 chữ số tận cùng thực chất là xác định số dư khi số đó chia cho 100
Ở đây để đơn giản ta sẽ tìm số dư của số đó khi chia cho 4 và 25 sau đó kết hợp để tìm ra kết quả.
Bắt đầu chi tiết nhé: mình làm với \(7^{99}\)
Ta có:
- \(7^{99} \equiv (-1)^{99} \equiv -1\ (mod 4) \Rightarrow 7^{99}=4k-1\ với \ k\in \mathbb{Z}\)
\(7^{99}= 7.(7^2)^{49}=7.49^{49}\equiv 7.(-1)^{49}\equiv-7 \ (mod25) \Rightarrow 7^{99}= 25q-7 \ với \ q\in \mathbb{Z}\)
\(\Rightarrow 4k-1=25q-7 \Rightarrow q-2\ \vdots\ 4\ \ hay\ \ q=4t+2\\ \Rightarrow 7^{99}=25(4t+2)-7=100t+43\)
Vậy \(7^{99}\) có 2 chữ số tận cùng là 43
Tìm 2 chữ số tận cùng có nghĩa là số dư của số đó khi chia cho 100m ở đây ta áp dụng phép đồng dư là đc!
+) 799 : 100
Ta có: \(7^4\equiv1\left(mod100\right)\)
\(\left(7^4\right)^{24}\equiv1^{24}\equiv1\left(mod100\right)\)
\(7^{99}\equiv7^{96}.7^3\equiv1.43=43\left(mod100\right)\)
Vậy 2 chữ số tận cùng của 799 là 43
+) 3517 : 100
Ta có: \(3^{20}\equiv1\left(mod100\right)\)
\(\left(3^{20}\right)^{25}\equiv1^{25}\equiv1\left(mod100\right)\)
\(3^{517}\equiv3^{500}.3^{17}\equiv1.63=63\left(mod100\right)\)
Vậy 2 chữ số tận cùng của 3517 là 63