\(P=1-\dfrac{1}{a}+\dfrac{6}{a^2}=6\left(\dfrac{1}{a}-\dfrac{1}{12}\right)^2+\dfrac{23}{24}\ge\dfrac{23}{24}\)
\(P_{min}=\dfrac{23}{24}\) khi \(a=12\)
\(P=1-\dfrac{1}{a}+\dfrac{6}{a^2}=6\left(\dfrac{1}{a}-\dfrac{1}{12}\right)^2+\dfrac{23}{24}\ge\dfrac{23}{24}\)
\(P_{min}=\dfrac{23}{24}\) khi \(a=12\)
cho a,b,c>0. tìm GTNN của \(P=\dfrac{a^2}{c\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(b^2+c^2\right)}\)
cho a,b,c > 0. Tìm GTNN của
\(P=\dfrac{a^2}{\left(a+b\right)^2}+\dfrac{b^2}{\left(b+c\right)^2}+\dfrac{c}{4a}\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
cho a,b,c>0 thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\). tìm GTNN của biểu thức \(T=a+b+c+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
cho a,b,c dương thỏa mãn \(\left(3a+2b\right)\left(3a+2c\right)=16bc\). tìm GTNN của \(P=\dfrac{\left(a+b+c\right)^2}{a\left(b+c\right)}\)
cho \(\left(a+b-c\right)^2=ab\) và a,b,c>0 tìm GTNN của \(P=\dfrac{c^2}{a+b-c}+\dfrac{c^2}{a^2+b^2}+\dfrac{\sqrt{ab}}{a+b}\)
cho a,b,c là độ dài 3 cạnh của tam giác vuông có cạnh huyền c. tìm GTNN của \(P=\dfrac{a^2\left(b+c\right)+b^2\left(c+a\right)}{abc}\)
cho x,y>0. tìm GTNN của \(A=\dfrac{\left(x+y+1\right)^2}{xy+x+y}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
Rút gọn biểu thức: B=\(\left(\dfrac{2}{a^2+a}-\dfrac{2}{a+1}\right):\dfrac{1-a}{a^2+2a+1}\) (với \(a\ne0\)và \(a\ne\pm1\) ).