\(M=\left|2x-3\right|+\frac{\left|4x-1\right|}{2}\Rightarrow2M=\left|4x-6\right|+\left|4x-1\right|\)
Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) . Dấu đẳng thức xảy ra khi a,b cùng dấu.
Được : \(2M=\left|6-4x\right|+\left|4x-1\right|\ge\left|6-4x+4x-1\right|=5\) \(\Rightarrow2M\ge5\)
\(\Rightarrow M\ge\frac{5}{2}\) . Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}6-4x\ge0\\4x-1\ge0\end{cases}\)\(\Leftrightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
Vậy Min M = \(\frac{5}{2}\Leftrightarrow\frac{1}{4}\le x\le\frac{3}{2}\)