\(D=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-x\right)}\)
=\(\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
=\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(bđt svac-xơ)
Đặt x+y=a(a>2 do x,y>1)
=> \(D\ge\frac{a^2}{a-2}=\frac{\left(a^2-8a+16\right)+8\left(a-2\right)}{a-2}=\frac{\left(a-4\right)^2}{a-2}+8\ge8\)
Dấu "=" xảy ra <=> a=4 và x=y <=> x+y=4 và x=y <=> x=y=2
Vậy minD=8 <=>x=y=2