Các số dương x,y,z thỏa mãn điều kiện x+y+z=1.Tìm GTNN của biểu thức
F=\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(x+z\right)}\)
Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(P=\frac{x\left(yz+1\right)^2}{z^2_{ }\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho x,y,z là các số thực dương thỏa mãn xyz = 1. Tìm GTLN của biểu thức:
\(P=\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
Cho x,y,z là các số thực dương thỏa mãn x+y-z+1=0.Tìm GTLN của biểu thức \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
Cho x , y , z là 3 số thực dương thỏa mãn điều kiện : \(x+y+z+\sqrt{xyz}=4\)
Rút gọn biểu thức : B = \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
Cho x, y, z là các số thực dương thỏa mãn: \(x+y+z+\sqrt{xyz}=4\). Rút gọn biểu thức: \(A=\sqrt{x.\left(4-y\right).\left(4-z\right)}+\sqrt{y.\left(4-z\right).\left(4-x\right)}+\sqrt{z.\left(4-x\right).\left(4-y\right)}-\sqrt{xyz}\)