\(A=\frac{3}{2+\sqrt{-x^2+2x+7}}=\frac{3}{2+\sqrt{-\left(x-1\right)^2+8}}\ge\frac{3}{2+\sqrt{8}}\)
Vậy GTNN của A là \(\frac{3}{2+\sqrt{8}}\) khi \(x=1\)
\(A=\frac{3}{2+\sqrt{-x^2+2x+7}}=\frac{3}{2+\sqrt{-\left(x-1\right)^2+8}}\ge\frac{3}{2+\sqrt{8}}\)
Vậy GTNN của A là \(\frac{3}{2+\sqrt{8}}\) khi \(x=1\)
Cho: \(P=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) (ĐKXĐ: x>0; \(x\ne1\)). Tìm giá trị nhỏ nhất của biểu thức: \(\dfrac{7}{P}\)
Câu 1: Cho 0<x<3. tìm GTNN của biểu thức A=\(\dfrac{81x}{3-x}\)+\(\dfrac{3}{x}\)
Câu 2: Tìm GTLN của biểu thức A= \(\dfrac{1}{3x-2\sqrt{6x}+5}\)
Câu 3: tìm GTNN của biểu thức A, biết A= \(2014\sqrt{x}+2015\sqrt{1-x}\)
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
Cho 3 số thực a,b,c dương và thỏa mãn: \(a^2+b^2+c^2=3\). Tìm GTNN của biểu thức: \(A=\dfrac{1}{\sqrt{1+8a^3}}+\dfrac{1}{\sqrt{1+8b^3}}+\dfrac{1}{\sqrt{1+8c^3}}\)
Cho hai số dương x,y thay đổi thỏa mãn xy=2. Tìm GTNN của biểu thức M=\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
Tìm GTNN của biểu thức A=\(\dfrac{x-5}{\sqrt{x-2}-\sqrt{3}}\)
a)Tìm GTNN của biểu thức:
1) \(Q=\dfrac{A}{-x+3\sqrt{x}-2}\) với \(0\le x\le4\)
2) \(R=\dfrac{\sqrt{x}}{A}\)
b)Tìm GTLN của biểu thức:
\(C=\dfrac{A}{\sqrt{x}+7}\) với \(x>1\)
( Chú ý: \(A=\dfrac{x^2-1}{x^2+1}\) nha các bạn)
1. Giải phương trình:
a) x2 - 2x = 2\(\sqrt{2x-1}\)
b) 2(x2 + 2) = 5\(\sqrt{x^2+1}\)
c) x2 + 3x + 1 = (x+3)\(\sqrt{x^2+1}\)
2. Cho x,y,z>=0 thỏa mãn điều kiện x+y+z=a
a) Tìm GTLN của biểu thức A=xy+yz+xz
b) Tìm GTNN của biểu thức B=x2 + y2 + z2
3. Cho 0<x<1, tìm GTNN của B=\(\dfrac{3}{1-x}+\dfrac{4}{x}\)
Cho x,y,z>0 . Tìm GTNN của biểu thức :
\(P=\dfrac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\dfrac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\dfrac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)