A=x2+x+1
=(x2+2.\(\frac{1}{2}\)x+\(\frac{1}{4}\))+1-\(\frac{1}{4}\)
=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)\(\ge\frac{3}{4}\)
Để A=\(\frac{3}{4}\) thì : \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)x=\(\frac{1}{2}\)
vạy Min A=\(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
B=2x2+3x+5
=2(x2+\(\frac{3}{2}x\))+5
=2(x2+2.\(\frac{3}{4}x+\frac{9}{16}\))+5-2.\(\frac{9}{16}\)
=2(x+\(\frac{3}{4}\))2+\(\frac{53}{16}\)\(\ge\frac{53}{16}\)
Để B=\(\frac{53}{16}thì:\Leftrightarrow\left(x+\frac{3}{4}\right)^2=0\)
\(\Leftrightarrow x=-\frac{3}{4}\)
Vậy Min B= \(\frac{53}{16}\Leftrightarrow x=-\frac{3}{4}\)