\(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Suy ra Min A = -9/2 <=> x = 3/2
Ta có : \(A=2x^2-6x\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Có : \(2\left(x-\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(Min_A=\frac{-9}{2}\) khi và chỉ khi \(x=\frac{3}{2}\)