\(A=\left|2x-\dfrac{1}{3}\right|+1007\)
\(\left|2x-\dfrac{1}{3}\right|\ge0\)
\(\Rightarrow\left|2x-\dfrac{1}{3}\right|+1007\ge1007\)
Dấu "=" xảy ra khi:
\(\left|2x-\dfrac{1}{3}\right|=0\Rightarrow2x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{6}\)
\(\Rightarrow MIN_A=1007\) khi \(x=\dfrac{1}{6}\)
B tương tự
\(C=\left|2018-x\right|+\left|2017-x\right|\)
\(C=\left|2018-x\right|+\left|x-2017\right|\)
Áp dụng BĐT:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow C\ge\left|2018-x+x-2017\right|\)
\(C\ge1\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2018-x\ge0\Rightarrow x\le2018\\x-2017\ge0\Rightarrow x\ge2017\end{matrix}\right.\\\left\{{}\begin{matrix}2018-x< 0\Rightarrow x>2018\\x-2017< 0\Rightarrow x< 2017\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow2017\le x\le2018\)
D tương tự