sửa lại đề \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
sửa lại đề \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Rút gọn và tìm GTLN của biểu thức:
\(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
Cho A = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) Tìm GTLN của P = \(A-9\sqrt{x}\)
Cho A = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\) Tìm GTLN của A.
Cho M = \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right).\frac{2}{\sqrt{x}-1}\)
a) rút gọn M
b) tính giá trị của M khi x = \(6+2\sqrt{5}\)
c) tính GTLN của M
Cho A = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) với \(x\ge0,x\ne1\)
a, Rút gọn A
b, Tìm GTLN của A
Cho biểu thức : P=\(\frac{\sqrt{x}+1}{x-1}\)-\(\frac{x+2}{x\sqrt{x}-1}\)-\(\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
Tìm GTLN của Q=\(\frac{2}{P}\)+\(\sqrt{x}\)
Cho biểu thức : A=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a/ Tìm tập xác định của biểu thức A
b/ Rút gọn biểu thức A
c/Chứng minh rằng A> 0 với mọi x \(\ne\) 1
d/Tìm x để A đạt GTLN, tìm GTLN đó
K = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm x để K có nghĩa
b) Rút gọn K
c) Tìm x khi K = \(\frac{1}{2}\)
d) Tìm GTLN của K
Cho \(A=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\) với x \(\ge\) 0. Rút gọn A. Tìm GTNN và GTLN của A