a) $ĐKXĐ : x \neq 1, x ≥ 0$
Ta có :
$M= \bigg(\dfrac{x+2}{x\sqrt[]{x}-1}+\dfrac{\sqrt[]{x}}{x+\sqrt[]{x}+1} - \dfrac{1}{\sqrt[]{x}-1}\bigg) . \dfrac{2}{\sqrt[]{x}-1}$
$ = \bigg(\dfrac{x+2+\sqrt[]{x}.(\sqrt[]{x}-1) - (x+\sqrt[]{x}+1)}{(\sqrt[]{x}-1).(x+\sqrt[]{x}+1)}\bigg).\dfrac{2}{\sqrt[]{x}-1}$
$ = \dfrac{x-2\sqrt[]{x}+1}{(\sqrt[]{x}-1).(x+\sqrt[]{x}+1)} . \dfrac{2}{\sqrt[]{x}-1}$
$ = \dfrac{(\sqrt[]{x}-1)^2}{(\sqrt[]{x}-1).(x+\sqrt[]{x}+1)} . \dfrac{2}{\sqrt[]{x}-1}$
$ = \dfrac{2}{x+\sqrt[]{x}+1}$
Vậy $M = \dfrac{2}{x+\sqrt[]{x}+1}$ với $x \neq 1, x ≥ 0 $
b) Ta có : $x=6+2\sqrt[]{5}$
$ = (\sqrt[]{5})^2+2.\sqrt[]{5}.1+1$
$ = (\sqrt[]{5}+1)^2$
$\to \sqrt[]{x} = \sqrt[]{5}+1$
Do đó : $M = \dfrac{2}{(\sqrt[]{5}+1)^2+\sqrt[]{5}+1+1}$
$ = \dfrac{2}{5+3\sqrt[]{5}+1}$
c) Ta thấy : $x+\sqrt[]{x} + 1 ≥ 1> 0 $
$\to \dfrac{2}{x+\sqrt[]{x}+1} ≤ 2$
Dấu "=" xảy ra $⇔x=0$
Vậy $M_{max} = 2$ tại $x=0$