\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{x-\sqrt{x}}\right)\cdot\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\)
\(\Rightarrow P=1-\left(\frac{1}{\sqrt{x}}-9\sqrt{x}\right)\)
\(\le1-2\cdot\sqrt{\frac{1}{\sqrt{x}}\cdot9\sqrt{x}}=1-6=-5\)
Dấu "=" \(\Leftrightarrow\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow x=\frac{1}{9}\)
Vậy Max P = -5 <=> x = 1/9