Lời giải:
Ta có:
\(A=x\sqrt{x}+y\sqrt{y}=(\sqrt{x})^3+(\sqrt{y})^3=(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(=x-\sqrt{xy}+y=(\sqrt{x}+\sqrt{y})^2-3\sqrt{xy}\)
\(=1-3\sqrt{xy}\)
Ta thấy \(\sqrt{xy}\geq 0\Rightarrow A=1-3\sqrt{xy}\leq 1\)
Vậy \(A_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
Lại có, theo BĐT Cô-si:
\(1=\sqrt{x}+\sqrt{y}\geq 2\sqrt{\sqrt{x}.\sqrt{y}}=2\sqrt[4]{xy}\)
\(\Rightarrow \sqrt{xy}\leq \frac{1}{4}\)
\(\Rightarrow A=1-3\sqrt{xy}\geq 1-3.\frac{1}{4}=\frac{1}{4}\)
Vậy \(A_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)