Sửa đề :
Tìm max \(\sqrt{3x-9}+\sqrt{7-x}\)
Áp dụng BĐT Cô-si:
\(\sqrt{3x-9}=\frac{3\cdot\sqrt{3x-9}}{3}=\frac{\sqrt{9\cdot\left(3x-9\right)}}{3}\le\frac{\frac{9+3x-9}{2}}{3}=\frac{x}{2}\)
\(\sqrt{7-x}=\sqrt{1\cdot\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)
Cộng theo vế :
\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow x=6\)