- ĐK : \(\left\{{}\begin{matrix}x-3\ge0\\y-4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\y\ge4\end{matrix}\right.\)
Đặt A = \(\sqrt{x-3}+\sqrt{y-4}\) => A \(\ge0\)
Xét A2 = \(x-3+y-4+2\sqrt{\left(x-3\right)\left(y-4\right)}\)
= \(\left(x+y\right)-7+2\sqrt{\left(x-3\right)\left(y-4\right)}\)
= \(1+2\sqrt{\left(x-3\right)\left(y-4\right)}\)
Áp dụng BĐT AM - GM cho 2 số không âm ta suy ra : \(2\sqrt{\left(x-3\right)\left(y-4\right)}\le x-3+y-4\) = 8-7 = 1
=> \(A^2\le1+1=2\) , vì A \(\ge0\)
=> \(A\le\sqrt{2}\) . Dấu "=" xảy ra tại \(\left\{{}\begin{matrix}x-3=y-4\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\y=4,5\end{matrix}\right.\)
Vậy AMax = \(\sqrt{2}\) tại \(\left\{{}\begin{matrix}x=3,5\\y=4,5\end{matrix}\right.\)