ĐKXĐ: \(x>4\)
Ta có :
\(y=\frac{x-1}{\sqrt{x-4}}+\frac{x+1}{\sqrt{x-3}}=\frac{\left(x-4\right)+3}{\sqrt{x-4}}+\frac{\left(x-3\right)+4}{\sqrt{x-3}}=\left(\sqrt{x-4}+\frac{3}{\sqrt{x-4}}\right)+\left(\sqrt{x-3}+\frac{4}{\sqrt{x-3}}\right)\) (1)
*ADBĐT Cô si cho \(\sqrt{x-4}>0;\frac{3}{\sqrt{x-4}}>0\)ta đc:
\(\sqrt{x-4}+\frac{3}{\sqrt{x-4}}\ge2\sqrt{\sqrt{x-4}\times\frac{3}{\sqrt{x-4}}}\)
\(\Leftrightarrow\sqrt{x-4}+\frac{3}{\sqrt{x-4}}\ge2\sqrt{3}\) (2)
CMTT:\(\sqrt{x-3}+\frac{4}{\sqrt{x-3}}\ge2\sqrt{4}=4\) (3)
Từ (1)(2)(3)\(\Rightarrow y\ge2\sqrt{3}+4\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-4}=\frac{3}{\sqrt{x-4}}\\\sqrt{x-3}=\frac{4}{\sqrt{x-3}}\end{matrix}\right.\)
(còn lại bạn tự giải nha!)