Đặt \(A\) nhé mình thích \(A\) hơn
\(A=\dfrac{4}{5}+\dfrac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
\(\left\{{}\begin{matrix}\left|3x+5\right|\ge0\forall x\in R\\\left|4y+5\right|\ge0\forall y\in R\end{matrix}\right.\) \(\Rightarrow\left|3x+5\right|+\left|4y+5\right|\ge0\)
\(\Rightarrow\left|3x+5\right|+\left|4y+5\right|+8\ge8\)
\(\Rightarrow\dfrac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\dfrac{5}{2}\)
\(A=\dfrac{4}{5}+\dfrac{20}{\left|3x+5\right|+\left|4y+5\right|}\le\dfrac{23}{10}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=-\dfrac{5}{4}\end{matrix}\right.\)
Để B đạt gtln <=>20/|3x+5|+|4y+5|+8
<=>|3x+5|+|-5+4y|+8 đạt gtnn
Áp dung BĐT chứa dấu || ta có:
|3x+5|+|4y+5|>=|3x+5+(-5)+4y|
=>|3x+5|+|4y+5|>=|3x+4y|