\(A=\dfrac{1-\left|8x-\dfrac{2}{3}\right|}{2}\)
\(\left|8x-\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow1-\left|8x-\dfrac{2}{3}\right|\le1\)
\(MAX_A\Rightarrow MAX_{1-\left|8x-\dfrac{2}{3}\right|}\)
\(MAX_{1-\left|8x-\dfrac{2}{3}\right|}=1\)
Xảy ra khi và chỉ khi:
\(\left|8x-\dfrac{2}{3}\right|=0\Rightarrow8x=\dfrac{2}{3}\Rightarrow x=\dfrac{1}{12}\)
\(\Rightarrow MAX_A=\dfrac{1}{12}\) khi \(x=\dfrac{1}{12}\)
\(B=5-\left|\dfrac{3}{5}-2x\right|+2\)
\(B=7-\left|\dfrac{3}{5}-2x\right|\)
\(\left|\dfrac{3}{5}-2x\right|\ge0\forall x\)
\(\Rightarrow7-\left|\dfrac{3}{5}-2x\right|\le7\)
(ko tìm được MIN đâu nhé)
Dấu "=" xảy ra khi:
\(\left|\dfrac{3}{5}-2x\right|=0\Rightarrow\dfrac{3}{5}=2x\Rightarrow x=\dfrac{3}{10}\)
\(\Rightarrow MAX_B=7\) khi \(x=\dfrac{3}{10}\)
a) ta có : \(\left|8x-\dfrac{2}{3}\right|\ge0\Rightarrow1-\left|8x-\dfrac{2}{3}\right|\le1\Rightarrow\dfrac{1-\left|8x-\dfrac{2}{3}\right|}{2}\le\dfrac{1}{2}\) Vậy GTLN của A=\(\dfrac{1}{2}\) khi và chỉ khi x=\(\dfrac{1}{12}\)
b) Giải tương tự câu a
câu b bạn lập bảng và phân tích thành các truờng hợp và chọn GTNN trong các giá trị tìm được nha