Cho \(x\ge-1\) . Tìm GTLN và GTNN của hàm số \(y=\dfrac{x+1}{\sqrt{x^2+1}}\)
Cho 2 số thực dương thỏa mãn x+y+3xy=1
Tìm GTLN của biểu thức A= \(\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{3xy}{x+y}\)
Tìm GTLN của hàm số \(y=x\sqrt{4-x^2}\), với \(-2\le x\le2\).
1)Với \(1\le x\le3\) tìm GTNN của \(6\sqrt{x-1}+8\sqrt{3-x}\)
2) Tìm GTLN và GTNN của:
a) \(A=y-2x+5\) , với \(36x^2+16y^2=9\)
b) \(B=2x-y-2\) , với \(\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\sqrt{x-2}+\sqrt{4-x}\)
b) \(y=\dfrac{4x^4-3x^2+9}{x^2},x\ne0\)
c) \(P=\dfrac{x}{4}+\dfrac{1}{x-1}\) với x>1
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn đk \(\left(x+y\right)xy=x^2+y^2-xy\). GTLN của bthuc \(M=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho x,y,z dương thỏa mãn ab+bc+ca=1
Tìm GTLN của P=\(\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
1. Tìm GTLN \(y=x^3\left(2-x\right)^5\)
2. Cho \(0\le a\le1\). Chứng minh rằng \(a\left(1-a^2\right)\)\(\le\dfrac{2}{3\sqrt{3}}\)
3. Cho a,b,c >0
CMR: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
Cho hai số thực x, y thỏa mãn \(x^2+y^2=1\). Tìm GTLN và GTNN của biểu thức:
\(P=\dfrac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)