Điều kiện: \(\left\{{}\begin{matrix}4n+2\ge0\\4n-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n\ge-\dfrac{1}{2}\\n\ge\dfrac{1}{4}\end{matrix}\right.\)\(\Rightarrow n\ge\dfrac{1}{4}\)
Ta có: \(lim_{n\rightarrow+\infty}\left(\dfrac{3n-1}{\sqrt{4n+2}-\sqrt{4n-1}}\right)=\)
\(lim_{n\rightarrow+\infty}\left(\dfrac{3-\dfrac{1}{n}}{\sqrt{\dfrac{4}{n}+\dfrac{2}{n^2}}-\sqrt{\dfrac{4}{n}-\dfrac{1}{n^2}}}\right)=+\infty\)